Effect of RNA Shelf Life on Cycle Threshold (CT) Values in Patients Positively SARS CoV-2 with RRT-PCR Method

Main Article Content

Debby Ratna Puri Pujarama
Fitria Diniah Janah Sayekti (*) fitria.diniah@stikesnas.ac.id

(*) Corresponding Author

Abstract

Introduction: The shelf life of RNA is one of the things to consider in the success of the rRT-PCR test. RNA storage that is not properly monitored can cause unstable Cycle Threshold (CT) results. The conditions for storing RNA are 4 °C if the RNA will be used directly for PCR, -20 °C if it will be used within 24 hours.


Objective: The purpose of this study was to determine the effect of the RNA storage period at -20 °C on the Cycle Threshold value in Sars-CoV-2 positive patients using the rRT-PCR method after the RNA storage period was carried out.


Methods: This study was experimental with 3 treatment including 1 control and 2 treatments of RNA storage (24 h and 48 h). The results of the amplification stage show no difference in the results of the Cycle Threshold value between the control and the RNA storage life.


Results: These results were obtained from Kruskal Wallis statistical test with significant value 0,996 for target gene of E and 0,976 for target gene of RdRp.


Conclusions: From the results of this study, it can be concluded that the RNA storage life of 24 hours and 48 hours at -20 °C does not effect the Cycle Threshold values in Sars-CoV-2 positive patients using the rRT-PCR method

Article Details

How to Cite
Pujarama, D. R. P., & Sayekti, F. D. J. (2025). Effect of RNA Shelf Life on Cycle Threshold (CT) Values in Patients Positively SARS CoV-2 with RRT-PCR Method. Journal of Integrated Health Research, 1(2), 40–46. https://doi.org/10.70109/jinher.v1i2.10
Section
Articles

References

Agustiningsih, A., Nugraha, A. A., Daryanto, D., Pawestri, H. A., Ikawati, H. D., Harianja, H., Wibowo, H. A., Susanti, I., Indalao, I. L., & Sariadji, K. 2020. Pedoman Pemeriksaan PCR Sars-Cov-2 Bagi Petugas Laboratorium. Jakarta: Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan

Cao, Y., Yu, M., Dong, G., Chen, B., & Zhang, B. 2020. Digital PCR as an Emerging Tool for Monitoring of Microbial Biodegradation. Molecules, 25(3), 706.

CDC. 2021. About SARS-CoV-2, the virus that causes COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/your-health/about-covid-19/basics-covid-19.html [Date accessed: 4 November 2021]

CDC. 2022. SARS-CoV-2 Variant Classifications and Definitions. https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html. [Date accessed: 26 April 2022]

de Oliveira, P. S. S., de Oliveira Silva, B., e Silva, R. P., Galdino, L. V., de Carvalho, V. M. F., de Almeida, A. R., da Rosa, M. M., de Melo Rêgo, M. J. B., da Rocha Pitta, M. G., & Pereira, M. C. 2022. Evaluation of long-term stability of SARS-CoV-2 nucleic acid extracted from human nasopharyngeal samples. Journal of Virological Methods, 305, 114529.

Fraga, D., Meulia, T., & Fenster, S. 2014. Real‐Time PCR. Current Protocols Essential Laboratory Techniques, 8(1).

Ministry of Health. 2020. KMK_No._HK.01.07-MENKES-405-2020_ttg_Jejaring_Laboratorium_Pemeriksaan_COVID-19. Jakarta. Ministry of Health of the Republic Indonesia.

Khailany, R. A., Safdar, M., & Ozaslan, M. 2020. Genomic characterization of a novel SARS-CoV-2. Gene Reports, 19, 100682.

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., … Feng, Z. 2020. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 382(13), 1199–1207.

Mikha Agus Widiyanto, Mp. 2013. Statistika terapan. Elex Media Komputindo Organization, W. H. 2020. Diagnostic testing for SARS-CoV-2: interim guidance. https://www.who.int/publications/i/item/diagnostic-testing-for-sars-cov-2 [Date accessed: 11 September 2020]

Perumal, N., Jain, R. K., Shrivastava, R., Lalwani, J., & Chaurasia, D. 2020. Stability of SARS-CoV-2 RNA in Viral Lysis Buffer Stored at Different Temperatures. Journal of Laboratory Physicians, 12(04), 268–270.

Rabi, F. A., al Zoubi, M. S., Kasasbeh, G. A., Salameh, D. M., & Al-Nasser, A. D. 2020. SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far. Pathogens, 9(3), 231.

Rehman, S. ur, Shafique, L., Ihsan, A., & Liu, Q. 2020. Evolutionary Trajectory for the Emergence of Novel Coronavirus SARS-CoV-2. Pathogens, 9(3), 240.

Scientific, T. F. 2014. Real-time PCR handbook. Nueva York, Estados Unidos de Amrica: ThermofisherScientific.

Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. 2020. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Dalam Journal of Advanced Research (Vol. 24, hlm. 91–98). Elsevier B.V.

Simpson, A., Topol, A., White, B. J., Wolfe, M. K., Wigginton, K. R., & Boehm, A. B. 2021. Effect of storage conditions on SARS- CoV-2 RNA quantification in wastewater solids. PeerJ, 9.

Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. 2016. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in microbiology, 24(6), 490–502.

WHO. 2020. Public Health Emergency of International Concern (PHEIC). https://www.who.int/publications/m/item/covid-19-public-health-emergency-of-international-concern-(pheic)-global-research-and-innovation-forum